

Energy and Water Cycles in Hurricanes

Scott A. Braun
NASA/GSFC
Michael T. Montgomery
Colorado State University

CAMEX-4 Science Meeting New Orleans, Louisiana

March 13-15, 2002

Research Objectives

- Model validation using TRMM and CAMEX data
- Budget studies (momentum, heat, water)
 - Warm core formation mechanisms
 - Intensification mechanisms
 - Water cycling in hurricanes
- Storm dynamics
 - Comparison of idealized and full-physics models
 - Role of vortex Rossby waves and vorticity mixing

Recent Accomplishments

- Dynamic balance models
 - Applied to Hurricane Bob(1991)
 - Tools developed will be applied to CAMEX cases
- 2-km Hurricane Bonnie simulation
 - Validation against TRMM,EDOP

1.3-km grid scale simulation of Hurricane Bob (1991)

Balance model formulation

Sawyer-Eliassen balance equation for a 2D symmetric vortex: assumes gradient and hydrostatic balance

$$\frac{\partial}{\partial r} \left(\frac{N^2}{r} \frac{\partial \psi}{\partial r} \right) + \frac{\partial}{\partial z} \left(\frac{\overline{\eta} \overline{\xi}}{r} \frac{\partial \psi}{\partial z} \right) - \frac{\partial}{\partial z} \left(\frac{\overline{\xi}}{r} \frac{\partial V/\partial z}{\partial r} \frac{\partial \psi}{\partial r} \right) - \frac{\partial}{\partial r} \left(\frac{\overline{\xi}}{r} \frac{\partial V/\partial z}{\partial z} \frac{\partial \psi}{\partial z} \right) = \frac{\partial Q}{\partial r} - \frac{\partial \left(\overline{F} \overline{\xi} \right)}{\partial z}$$

$$\psi = streamfunction$$
 $Q = heating rate$ $F = friction$

Secondary circulation derived from
$$\psi$$
: $U = -\frac{1}{r} \frac{\partial \psi}{\partial z}$ $w = \frac{1}{r} \frac{\partial \psi}{\partial r}$

Solution possible if
$$N^2 \left[\overline{\eta} \, \overline{\xi} - \frac{\overline{\xi}^2}{N^2} \left(\frac{\partial V}{\partial z} \right)^2 \right] > 0$$
 i.e., absolute vorticity > 0 and vertical shear not too large

Balance model inputs

Inputs into the balance model: Azimuthal mean tangential velocity, absolute vorticity, and diabatic heating (friction not shown)

Balance model results

Good qualitative agreement in radial velocities Good quantitative agreement in vertical velocities

Inertial instability, agradient flow and strong vertical shear cause errors.

Low-level outflow well reproduced despite earlier studies suggesting unbalanced flow

Bonnie Simulation

- PSU/NCAR MM5 model
 - Nonhydrostatic with multiple nests
 - Initialized with ECMWF analyses
- Four grids (36, 12, 6, and 2 km)— 6, 2-km grids started at 6 h
- 12 UTC, 22 AUG to 18 UTC, 23 AUG 1998
- 4D-VAR initialization of bogus vortex
- Physics
 - Modified Blackadar PBL
 - Goddard version of 3-ice microphysics

Validation of Bonnie Simulation using TRMM

Snow vs. graupel contributions

Total dBZ

Partitioning of dBZ into snow and graupel contributions suggests excessive graupel production

Snow dBZ

Graupel dBZ

Ongoing CAMEX-3 Research

- Hurricane Bonnie
 - Sensitivity to microphysics
 - Effects of shear on asymmetries—rain max
 downshear left, role of relative flow vs. vortex tilt

Hodograph of storm-relative environmental flow

Colors: Time-avg. radial wind at 122 m Contours: Time-avg. rain mixing ratio Arrows: Relative env. boundary layer flow

Future CAMEX-3 Research

- Hurricane Bonnie
 - Application of boundary layer model to examine relative flow effects on asymmetries
 - Application of nonlinear balance models to Bonnie
 - 2D symmetric balance diagnostics
 - 3D asymmetric balance diagnostics
 - Water and heat budgets
 - Comparison of simulated radiances to observations, sensitivity to microphysics

Ongoing CAMEX-4 Research

- Hurricane Erin
- 00 UTC, 7 Sept to 00 UTC, 10 Sept 2001—+24 h in progress
- Two grids (36, 12 km)—Higher resolution runs in progress
- No bogus vortex

Hurricane Erin-TRMM vs. MM5

TRMM/TMI rainfall

Simulated surface winds (shading) and explicit precipitation (contours)

Simulation shows reasonable transition in structure

Future CAMEX-4 Research

- Hurricane Erin
 - Extend length of simulation
 - Extend to higher grid resolution (~1-4 km)
 - Validate against TRMM, CAMEX-4 data
 - Examine intensification mechanisms
 - Examine possible development of secondary wind maximum, outer rainband structure changes